Degradación de plaguicidas
Galli (2002) señala que los compuestos tóxicos más usados son los plaguicidas, los cuales en muchos casos resultan ser muy tóxicos. Estos compuestos químicos constituyen una adecuada fuente de carbono y donadores de electrones para ciertos microorganismos del suelo. En la literatura existen algunos ejemplos de degradación de plaguicidas por microorganismos, entre los cuales se pueden citar los siguientes.
Según Golovleva et al. (1990), las Pseudomonas son las bacterias más eficientes en la degradación de compuestos tóxicos. La capacidad de estas bacterias para degradar estos compuestos depende del tiempo de contacto con el compuesto, las condiciones ambientales en las que se desarrollen y su versatilidad fisiológica. Vásquez y Reyes (2002) evaluaron tres especies de Pseudomonas para la biodegradación del herbicida Aroclor 1242. Los resultados obtenidos demuestran la gran capacidad de las bacterias para degradarlo, siendo el porcentaje de degradación de 99,8, 89,4 y 98,4respectivamente.
Ouahiba et al. (2001) aislaron varias especies de hongos en suelos contaminados con pesticidas de Argelia. Las especies más frecuentes fueron Aspergillus fumigatus, A. Níger, A. terreus, Absidia corymberifera y Rhizopus microsporus var microsporis. En este experimento, 53 especies aisladas destacaron por su habilidad para la degradación del herbicida metribuzin en medio liquido. Se demostró a su vez que el herbicida promovía el crecimiento de los géneros Absidia y Fusarium, los cuales lograron eliminar el 50% del compuesto después de 5 días. Por otra parte, la especie Botrytis cinerea eliminó el herbicida linuron casi completamente, y 31 especies pudieron eliminar el metroburon, destacando Botrytis Cinerea que lo eliminó casi en su totalidad.
Otro experimento mostró la eficiencia de la bacteria Rhodococuss sp. para degradar las triazinas a nitrato. Fournier et al. (2002) realizaron un ensayo para estudiar las transformaciones del herbicida atrazina como consecuencia de la descomposición microbiana. Este compuesto logró ser transformado en nitrito (30%), óxido nitroso (3,2%), amonio (10%) y formaldehido (27%).
Degradación de hidrocarburos
Otro grupo de compuestos tóxicos muy abundante son los hidrocarburos. Halden et al. (1999) demostraron la eficiencia de bacterias del género Pseudomonas en la degradación del ácido 3-Phenoxybenzoico en suelos. Este experimento sirvió también para evaluar el papel biodegradativo de
Año XII, Nº2 / 2003
Mayo - Agosto
dos Pseudomonas que habían sido manipuladas genéticamente. Las bacterias resultaron ser efectivas en todos los casos; sin embargo, las bacterias modificadas genéticamente tuvieron una mayor capacidad para sobrevivir a factores ambientales adversos. Este resultado es alentador, dado que uno de los factores que muchas veces impide la biorremediación de suelos in situ son las condiciones ambientales desfavorables para el crecimiento bacteriano.
Otra especie de bacteria que ha sido usada para la degradación de hidrocarburos es Sphingomonas wittichii RW1, la cual en condiciones anaeróbicas es capaz de transformar el 2,7 diclorobenzeno, produciendo el metabolito 4 clorocatenol y el 1,2,3,4 tetraclorodibenzeno ( Hong et al. 2002).
Los hongos también han sido evaluados para la degradación de hidrocarburos. Boldu et al. (2002) estudiaron el papel del hongo Cladophialophora sp. sobre la degradación de benceno, tolueno, etilbenzeno y xileno. El hongo no fue capaz de degradar el benceno, pero degradó los compuestos alcalinizados (tolueno, etilbenzeno y xileno). El mecanismo de degradación fue una combinación de asimilación y cometabolismo. El tolueno y el etilbenzeno fueron usados como fuente de carbono y energía. En el proceso degradativo actúa la enzima monooxigenasa la cual se encargó de la degradación del tolueno, etilbenzeno y el xileno.
Otros microorganismos, menos estudiados pero que también contribuyen a la degradación de agentes contaminantes en el suelo, son las cianobacterias. Abed et al. (2002) estudiaron el papel de las especies Phormidium y Oscillatoria sobre la degradación de hidrocarburos. Los resultados señalan que en 7 días se había degrado el n-octadecano y el ristano en un 25 y 34%, respectivamente. Estos valores demuestran el potencial de estas cianobacterias para el desarrollo de futuras técnicas de biodegradación en suelos contaminados con hidrocarburos.
Las algas también juegan un papel importante en los procesos de biodegradación. Lai et al. (2002) estudiaron el proceso de biotransformación del esteroide estrógeno por acción de Chlorella vulgaris. Con luz esta especie metabolizó el 50% del estradiol, transformándolo a un compuesto desconocido, aunque otros estrógenos como el estriol hidroxiestrona y el etinil estradiol se mantuvieron estables en el cultivo del alga."
Duilio Torres Rodríguez, Facultad depostgrado Ciencia del Suelo, Universidad Central de Venezuela. 2101 Maracay (Aragua), Venezuela.
No hay comentarios:
Publicar un comentario